Neutrino BSM Theory

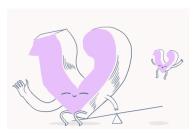
Julia Gehrlein

Brookhaven National Laboratory

BNL Snowmass Retreat

17th December 2021

Neutrino physics


- observation of neutrino oscillations: one of the few signs of physics beyond the SM
- ▶ neutrinos could be first messenger of the BSM sector → neutrino windows to new physics
- still many open questions in neutrino physics: leptonic CPV, flavor symmetries, neutrino mass scale, mass ordering, nature/origin neutrino mass term, new neutrino interactions, sterile neutrinos, connections to other open problems of SM
 - ⇒ many research opportunities accompanied by tremendous experimental progress in the next years

LOI on testable neutrinos mass models

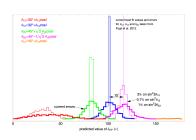
- direct consequence of observation of neutrino oscillations: massive neutrinos!
- origin of mass term unknown
- popular idea: seesaw mechanism

$$m_
u \sim rac{m_D^2}{M_R}$$

with $m_D \approx \mathcal{O}(100 \text{ GeV}) \rightarrow M_R \approx \mathcal{O}(10^{14} \text{ GeV})$

LOI on testable neutrinos mass models

- ▶ popular idea: seesaw mechanism ⇒ very hard to test experimentally!
- put forward experimentally testable neutrino mass models: low-scale neutrino mass models
- instead of suppression of EW scale by large mass scale: small lepton number breaking parameter, radiative seesaw models, introduce new gauge group
- low-scale neutrino mass models: rich phenomenology, connection to other open problems of SM!

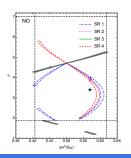

Snowmass Letter of Interest: Testable neutrino mass models

Asmaa Abada, ¹ Kaustubh Agashe, ² Stefan Antusch, ³ K.S. Babu, ⁴ Brian Batell, ⁵ Alain Blondel, ⁶ Vedran Brdar, ⁷ Joydeep Chakrabortty, ⁸ Sabya Sachi Chatterjee, ⁹ Garv Chauhan, ¹⁰ Mu-Chun Chen, ¹¹ James M. Cline, ¹² Hooman Davoudiasl, ¹⁹ Bhaskar Dutta, ¹⁴ André de Gouvèa, ¹⁵ Frank F. Deppisch, ¹⁶ Valentina De Romeri, ¹⁷ P.S. Bhupal Dev, ¹⁰ Marco Drewes, ¹⁸ Yasaman Farzan, ¹⁹ Enrique Fernandez-Martinez, ^{20,21} Julia Gehrlein, ¹³ Jamuse Gluza, ²² Dorival Gongalves, ⁴ Rebeca Gonzalez Surare, ²³ Stubatá Goswani, ²⁴ Elena Graverini, ²⁵ Tao Han, ⁵ Julian Heeck, ²⁶ Matheus Hostert, ^{27, 28, 29} Alejandro Ibarra, ³⁰ Sudip Jana, ⁷ Kevin J. Kelly, ³¹ Manfirdel Lindner, ⁷ Jacobo Lopez-Pavon, ¹⁷ Michele Lucente, ²⁹ Pedro A. N. Machado, ³¹ Manimala Mitra, ³³ Irina Mociotu, ³⁴ Rabindra N. Mohapatra, ² Geopolang Mohlabeng, ³⁰ Viviana Nitro, ⁵⁸ Nobuchika Okada, ³⁶ Kojalin

4 / 10

LOI on leptonic sum rules

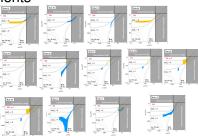
- entering precision era of neutrino physics: precise measurement of all mixing parameters anticipated in near future
 Is there a flavor symmetry in the lepton sector? What kind of flavor symmetry is it?
- most predictive flavor models predict correlations between mixing parameters
- ► study of required sensitivity to distinguish flavor models prominent in Snowmass13 ⇒ motivated sensitivity goal for DUNE



LOI on leptonic sum rules

- most predictive flavor models predict correlations between mixing parameters
- in the future: reconsider this study and expand to other flavor models

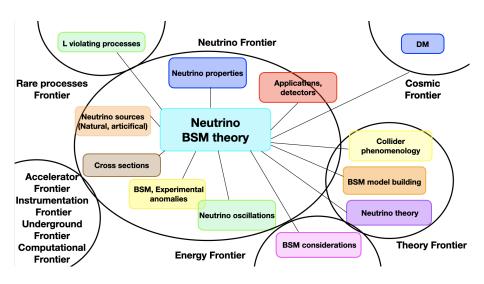
Snowmass Letter of Interest: Leptonic Sum Rules


Julia Gehrlein, ^{1,*} Silvia Pascoli, ² Serguey Petcov, ^{3,4} Martin Spinrath, ⁵ and Arsenii Titov ⁶

JG, Spinrath '20

LOI on leptonic sum rules

- progress experiments measuring neutrino mass related observables (measurements of absolute neutrino mass scale, mass ordering, neutrinoless double beta decay)
- predictive flavor models relate neutrino masses to each other \Rightarrow testable neutrino mass sum rules e.g. $m_1 e^{i\alpha_1} + m_2 e^{i\alpha_2} + m_3 = 0$
- > study predictions of mass sum rules to **plan stages**, **sensitivities** of $0\nu\nu\beta$ experiments



JG, Merle, Spinrath '16

Neutrino white papers

- LOIs feed into white papers, TG report:
 - ► Theory of Neutrinoless Double Beta Decay (Neutrino Theory, Artificial neutrino sources, Neutrino Properties, Neutrino BSM, Computation frontier)
 - BSM effects on neutrino flavor (Neutrino BSM, Neutrino oscillations, Neutrino properties, BSM model building)
- research connection to Neutrino Theory Group (TF11), Neutrino BSM Group (NF03): serve as early career liaison
- co-organized mini-workshop on neutrino theory in Sep 2020
- co-chaired NuTau2021, editor of NuTau white paper, contributed BSM theory sections

Neutrino BSM at Snowmass

Thank you for your attention!

10 / 10